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Abstract

A non-linear finite element analysis is presented, for the elasto-plastic behavior of thick shells and plates including the
effect of large rotations. The shell constitutive equations developed previously by the authors [Voyiadjis, G.Z., Woelke,
P., 2004. A refined theory for thick spherical shells. Int. J. Solids Struct. 41, 3747–3769] are adopted here as a base for the
formulation. A simple C0 quadrilateral, doubly curved shell element developed in the authors� previous paper [Woelke,
P., Voyiadjis, G.Z., submitted for publication. Shell element based on the refined theory for thick spherical shells] is
extended here to account for geometric and material non-linearities. The small strain geometric non-linearities are taken
into account by means of the updated Lagrangian method. In the treatment of material non-linearities the authors adopt:
(i) a non-layered approach and a plastic node method [Ueda, Y., Yao, T., 1982. The plastic node method of plastic anal-
ysis. Comput. Methods Appl. Mech. Eng. 34, 1089–1104], (ii) an Iliushin�s yield function expressed in terms of stress
resultants and stress couples [Iliushin, A.A., 1956. Plastichnost�. Gostekhizdat, Moscow], modified to investigate the
development of plastic deformations across the thickness, as well as the influence of the transverse shear forces on plastic
behaviour of plates and shells, (iii) isotropic and kinematic hardening rules with the latter derived on the basis of the
Armstrong and Frederick evolution equation of backstress [Armstrong, P.J., Frederick, C.O., 1966. A mathematical
representation of the multiaxial Bauschinger effect. (CEGB Report RD/B/N/731). Berkeley Laboratories. R&D
Department, California.], and reproducing the Bauschinger effect. By means of a quasi-conforming technique, shear
and membrane locking are prevented and the tangent stiffness matrix is given explicitly, i.e., no numerical integration
is employed. This makes the current formulation not only mathematically consistent and accurate for a variety of appli-
cations, but also computationally extremely efficient and attractive.
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1. Introduction

Many approaches are used in the elasto-plastic analysis of plates and shells. The finite element method
has been successful in modeling the linear behaviour of shells and it is therefore natural to apply the same
method to the non-linear analysis of these technically important structures. Non-linear computations are
based on incremental and/or iterative algorithms, which are computationally expensive. The efforts of
many authors are not only directed to accuracy and wide applicability of their formulations, but also to
computational efficiency. The objective of the present work is to develop a general, accurate and very effi-
cient procedure for the analysis of thick/thin plates and shells, including geometric and material non-linear-
ities with isotropic and kinematic hardening rules and an explicit form of the tangent stiffness matrix.

Many investigators avoid the problem of shell constitutive equations by following a layered approach,
also referred to as �through-the-thickness integration�, (Dvorkin and Bathe, 1984; Flores and Onate, 2001;
Kebari and Cassell, 1992; Kollmann and Sansour, 1997; Onate, 1999; Parish, 1981). This procedure,
although accurate, requires sometimes prohibitively large storage of the computer. For the case of a
non-layered finite element, a general and accurate shell theory is of crucial importance. Following the work
of Voyiadjis and Shi (1991), Voyiadjis and Woelke (2004) presented a refined theory for thick shells, based
on analytical closed form solutions for thick containers. This theory proves to be very efficient in the treat-
ment of both thin and thick shells of general shape. It accounts for the effect of transverse shear deforma-
tion, distribution of radial stresses, as a very important feature for thick shells and the initial curvature
effect. This not only contributes to the stress resultants and stress couples, but also results in a non-linear
distribution of the in-plane stresses across the thickness of the shell. The resulting constitutive relations give
very good results for extremely thick (R/t = 3), and very thin shells of general shape, as well as plates and
beams. A brief outline of the theory is provided in subsequent sections.

The C0 finite element given in Woelke and Voyiadjis (submitted for publication), based on the aforemen-
tioned theory, and the quasi-conforming technique, provides a very effective tool for elastic analysis of
structures. The quasi-conforming technique given in Tang et al. (1980, 1983) is an extension of the assumed
strain fields method (Ashwell and Gallagher, 1976; Huang and Hinton, 1984; Park and Stanley, 1986), and
it has been successfully applied to overcome the locking phenomena (Shi and Voyiadjis, 1990, 1991). The
biggest advantage of this technique, when compared with the most widely used selective integration method
(Hughes, 1987; Stolarski and Belytschko, 1983; Stolarski et al., 1984; Yang et al., 2000; Zienkiewicz, 1978),
is the fact that the stiffness matrix of the element is given explicitly. Thus, this method is very attractive for
non-linear analysis where the element matrices are calculated many times during the analysis. Moreover,
selective integration requires explicit segregation of transverse shear terms from bending and membrane
terms, which is not possible when they are coupled, as is mostly the case for non-linear analysis. This prob-
lem was solved by a generalization of the selective integration procedure (Hughes, 1980). The quasi-
conforming technique is however chosen here for its simplicity and low computational cost. As a result
of this choice and the application of a non-layered approach, numerical integration will not be performed
in the present procedure at any stage of the analysis. All the integrals are calculated analytically with the
results later introduced into a computer code. This makes the current formulation consistent mathemati-
cally and extremely efficient from the point of view of computer time and power.

The strain fields are interpolated directly here, rather than obtained from the assumed displacement field
providing the adequate representation of the rigid body modes. The spurious energy mode, which can be a
problem in finite elements with reduced integration, is avoided here by the appropriate choice of the strain
fields. The compatibility equations of the displacements can also be satisfied in the assumed strain fields.
This results in a more complicated formulation of the element stiffness matrix, and therefore compatibility
is not enforced. The element adopted in this work is unified for both curved and flat configurations, satisfies
the Kirchhoff–Love hypothesis in the case of thin plates and shells, exhibits neither shear nor membrane
locking and is free from spurious zero energy modes.
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In elasto-plastic, finite element analysis of shells, large rotations and translations can play an important
role. Displacements at the regions of the structure, which undergo inelastic deformations, can be very large.
Thus, to achieve the desired accuracy, geometric non-linearities must be considered. The updated Lagrang-
ian description, which has proven to be a very effective method (Bathe, 1982; Flores and Onate, 2001; Hor-
rigmoe and Bergan, 1978; Kebari and Cassell, 1992) is adopted here. The element local coordinates and the
local reference frame are continuously updated during the deformation. We consider large rotations and
rigid translations here, but small strains with the total rotations decomposed into large rigid rotations
and moderate relative rotations are also considered. The relative rotations and the derivatives of the in-
plane displacements from two consecutive configurations can be considered small, (Shi and Atluri, 1988;
Shi and Voyiadjis, 1991). Consequently, the quadratic terms of the derivatives of the in-plane displacement
are negligible. We therefore have a non-linear analysis with large displacements and rotations but small
strains. The transformation matrix given in Argyris (1982) is employed to handle large rigid rotations.
The assumed strain finite element with an explicit form of the stiffness matrix, as described above, provides
the linear part of the element tangent stiffness matrix.

Very many reliable �layered models� for elasto-plastic analysis of shells have been published. In this ap-
proach, a plate or a shell is divided into layers where stresses are calculated and the yield condition is
checked for each layer separately. The forces and moments are then calculated by integration through
the thickness. Although this method can give very accurate results, it can also be very demanding in terms
of computational power. If on the other hand a �non-layered� approach is adopted, the yield function is
integrated through the thickness of the plate or shell and therefore expressed in terms of stress resultants
and couples. Numerical integration of the stresses is not necessary in this case, which makes the �non-lay-
ered� formulation much cheaper computationally. The approximation of the yield criterion expressed in
terms of forces and moments is expected to result in a loss of accuracy. This is however not the case as
was shown by many authors comparing the two methods (Bieniek and Funaro, 1976; Owen and Hinton,
1980; Shi and Voyiadjis, 1992). Both models compare very well with the analytical solutions available in
Hodge (1959), Olszak and Sawczuk (1977), Sawczuk (1989) and Sawczuk and Sokol-Supel (1993).

The non-layered model is employed in the current work with the yield function in terms of stress resul-
tants and couples. In this case, the accuracy of the yield criterion is very important. A comparison of dif-
ferent yield surfaces can be found in Robinson (1971). A modified Iliushin�s yield function is adopted in this
work (Iliushin, 1956). Several modifications will be made to the original Iliushin�s yield function.

The first modification allows for capturing the progressive development of the plastic curvatures across
the thickness of the shell, as shown in Crisfield (1981) and Shi and Voyiadjis (1992). The model presented
here very accurately reproduces the first yield point and tracks the growth of plastic curvatures until a plas-
tic hinge is developed.

The transverse shear forces may significantly affect the plastic behaviour of both thick and, for certain
loading conditions, thin shells. Shear becomes even more important in the case of anisotropic materials. Yet
the influence of transverse shear forces on the plastic behaviour of plates and shells has been covered in the
literature to a much lesser extent than in the case of elastic analysis, (Basar et al., 1992, 1993; Kratzig, 1992;
Kratzig and Jun, 2003; Niordson, 1985; Noor and Burton, 1989; Palazotto and Linnemann, 1991; Reddy,
1989; Reissner, 1945). This effect is investigated here and it is shown that transverse shears influence
strongly the plastic behaviour of considered structures.

Isotropic hardening as given in Shi and Atluri (1988) is also incorporated into the yield function in the
present formulation. More importantly however, a kinematic hardening rule capable of capturing the
Bauschinger effect is defined. It is well known that when a material or a structure is loaded in tension into
a plastic zone, and subsequently the load is reversed, the yielding in compression will occur at a reduced
value of stress. This anisotropy in the material is induced by plastic deformation. Relatively few hardening
rules for non-layered plates and shells have been published that are capable of correctly representing this
phenomenon. As first recognized by Wempner (1973), the stress resultants and couples of the classical
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theory are not sufficient to describe accurately the state of stress in plastic shells. Bieniek and Funaro (1976)
introduced �hardening parameters�, in the form of residual bending moments, allowing for the description
of a Bauschinger effect. However, Bieniek and Funaro recognized that the �hardening parameters� defined
by them do not provide a full representation of kinematic hardening. For the appropriate representation of
the rigid translation of the yield surface during non-elastic deformation in the stress resultant space, one
needs not only the residual bending moments, but also residual shear and normal forces. These are equiv-
alent parameters to the backstress in the stress space. We will therefore present a new kinematic hardening
rule for non-layered plates and shells here, explicitly derived from the evolution of the backstress given by
Armstrong and Frederick (1966). It is shown later that the approach presented here is very accurate, yet
simple and efficient, which makes it very important form a practical engineering point of view.

Modeling of the elasto-plastic behaviour of structural elements based on the mathematical theory of
plasticity involves analysis of spread of plastic deformations in the regions where the yield condition is sat-
isfied. Alternatively, the inelastic deformations may be considered concentrated in the plastic hinges. The
former method originates from the analytical limit analysis of structures performed under the assumption
of elastic-perfectly plastic behaviour of the material (Hodge, 1959, 1963; Olszak and Sawczuk, 1977; Saw-
czuk and Sokol-Supel, 1993). Using the finite element method and the concept of the plastic hinges Ueda
and Yao (1982) developed a �plastic node method� for the plastic analysis of structures. In their formulation,
the yield function is expressed in terms of stresses, as in the �layered model�. Shi and Voyiadjis (1992) pre-
sented a non-layered plate element with the yield function in terms of forces and moments, adopting the
concept of concentration of plastic deformations in the plastic hinges. A similar approach is adopted in this
work, saving again computer time, yet giving very accurate results, as will be shown later.

This paper is divided into eight sections. After Section 1, the shell constitutive equations are briefly intro-
duced. In Section 3, we present the shell kinematics. Section 4 is devoted to the linear element stiffness ma-
trix. Section 5 gives a description of material non-linearities, with the definition of yield surface, flow and
hardening rules. The elasto-plastic stiffness matrix of the element is derived in Section 6. In Section 7, we
present an outline of a numerical procedure and a series of discriminating examples, demonstrating that the
current computational model provides very good results for a variety of problems in elasto-plastic large
displacement analysis of both thick and thin shells, plates and beams. Finally, in Section 8, we summarize
the results and draw the conclusions.
2. Shell constitutive equations

Voyiadjis and Woelke (2004) presented a detailed derivation of the shell constitutive equations adopted
for the finite element formulation. Only the final set of relations is given here for self-completeness. The
refined theory accounts for the effect of transverse shear deformation, the distribution of radial stresses
and the initial curvature of the shell, which results in a non-linear distribution of the in-plane stresses across
the thickness of the shell.

The main features of the shell equations are the following:

(1) Assumed out of plane stress components that satisfy given traction boundary conditions. These are
due to a closed form elasticity solution for thick walled spherical containers under internal and/or
external uniform pressure, obtained by Lame (1852).

(2) Three-dimensional elasticity equations with an integral of the equilibrium equations.
(3) Stress resultants and stress couples acting on the middle surface of the shell together with average dis-

placements along a normal of the middle surface of the shell and the average rotations of the normal
(Voyiadjis and Baluch, 1981).
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The membrane strains and curvatures in a rectangular coordinate system (x,y,z) are given by Eqs. (1)–
(6).
ex ¼
ou
ox

þ w
R
; ð1Þ

ey ¼
ov
ox

þ w
R
; ð2Þ

exy ¼
1

2
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oy

þ ov
ox

� �
; ð3Þ

jx ¼
o/x
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¼ o

ox
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ox

� cxz �
u
R

� �
; ð4Þ
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¼ o
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v
R

� �
; ð5Þ

jxy ¼
1

2

o/x

oy
þ
o/y

ox

� �
; ð6Þ
where ex, ey, exy are normal and shear strains and jx, jy, jxy are curvatures at the mid-surface in planes
parallel to the xz, yz and xy planes respectively; u, v, w are the displacements along x, y, z axes respectively
(Figs. 2 and 3); cxz, cyz are transverse shear strains in xz and yz planes (Fig. 1); /x, /y are angles of rotations
of the cross-sections that were normal to the mid-surface of the undeformed shell (Figs. 1 and 4); R is a
radius of the shell.

The stress resultants and couples Mx, My, Mxy, Nx, Ny, Nxy, Qx, Qy shown in Fig. 2, can be expressed in
terms of the strains given above
Mx ¼ D½jx þ mjy �; ð7Þ
My ¼ D½jy þ mjx�; ð8Þ
Mxy ¼ Dð1� mÞjxy ; ð9Þ
Nx ¼ S½ex þ mey �; ð10Þ
Ny ¼ S½ey þ mex�; ð11Þ
Nxy ¼ Sð1� mÞexy ; ð12Þ
Qx ¼ T cxz; ð13Þ
Qy ¼ T cyz; ð14Þ
Fig. 1. Angle of rotation with transverse shear strains.



Fig. 2. Stress resultants on shell element.
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where
D ¼ Eh3

12ð1� m2Þ ; S ¼ Eh
ð1� m2Þ ; T ¼ 5

12

Eh
ð1þ mÞ ð15Þ
and E is Young�s Modulus, h is thickness of the shell, m is Poisson�s ratio.
These constitutive equations reduce to those given by Flugge (1960) when the shear deformation and

radial effects are neglected. We use the above equations to formulate the coupled strain energy density
and derive the stiffness matrix of the element.
3. Shell kinematics

The updated Lagrangian method is employed in the present study of large displacements and rotations
of the shell element. The coordinates of the nodal points are continuously updated during the deformation.
The rotations are additively decomposed into large rigid rotations and moderate relative rotations (Shi and
Voyiadjis, 1991).

The structure under consideration is defined in the global, fixed coordinate system X. We also have the
local coordinate system x, surface coordinates at any nodal point xs, and base coordinates, which serve as a
reference frame for the global degrees of freedom (Fig. 3).
Fig. 3. Local coordinate system and normal vector eS3.
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• Local coordinates
In order to obtain the unit vector in the direction normal to the plane of the element, we first define

two vectors, 41
�!

and 42
�!

connecting the origin of the coordinate system (point 4) to points 1 and 2
respectively. The cross product of these two vectors, divided by its length, gives e3, as shown in Fig. 3
and given by Eq. (16)
e3 ¼
41
�!� 42

�!
j 41�!� 42

�!j
: ð16Þ
The unit vector e2 can be similarly obtained as a cross product of e3 and e1.We can now determine the
relation between the global coordinates X and element local coordinates in configuration k
ke ¼ kRE; ð17Þ

where ke is the unit base vector of the local coordinates in configuration k, and E is the unit base vector
of the global coordinates; R is a transformation matrix from local to global coordinates.

• Surface coordinates
The surface coordinate system xS originates at each node of the element. As defined by Shi and Voy-

iadjis (1991), the position and direction of this system are functions of rotations. Surface coordinates
translate and rigidly rotate with the element. Consequently, xS3 is always normal to the surface of the
element.The finite rigid body rotation vector V is given by
V ¼
h1
h2
h3

2
64

3
75; ð18Þ
where h1, h2, h3 are rigid body rotations around x, y, z axes respectively.The transformation matrix of
large rotations Th, given by Argyris (1982) is used here
Th ¼ expð~hÞ ð19Þ

with
~h ¼ ~hij ¼ eijkhk; k ¼ 1; 2; 3; ð20Þ
where ~h is a skew symmetric matrix and eijk is the permutation tensor. In the above equation, the indicial
notation is used with Einstein�s summation convention. The transformation of the surface coordinates is
therefore
V0 ¼ ThV; ð21Þ

where V 0 is a rigid body rotation vector transformed into a new position. Similarly, we can write a trans-
formation of the surface coordinates for a given rotation vector hj resulting from configuration k � 1 to
k at node j
kes ¼ Tk�1
hj es; ð22Þ
where kes are the unit base vectors of the surface coordinates at configuration k. Defining the transfor-
mation between E and kes as
kes ¼ kRsE ð23Þ

we can rewrite Eq. (22) as
kes ¼ Tk�1
hj RsE ¼ kRk

sR
Tke ¼ kSj

ke; ð24Þ



Fig. 4. Incremental degrees of freedom of shell element in local coordinates.
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where kRT is the transpose of kR defined in Eq. (17) and kSj is a transformation matrix from local to the
surface coordinate system. It is worthy to note that 0Rs is a 3 · 3 identity matrix for a flat plate.

• The base coordinates defined as by Horrigmoe and Bergan (1978) are adopted here as a common refer-
ence frame to which all element properties are transformed, prior to the assembly of the stiffness matri-
ces. The base coordinates are defined by the combination of the fixed global and base
coordinates.The global degrees of freedom at node j are the incremental translations: DUj, DVj, DWj

in directions of global coordinates X, Y, Z and rotations Hxj, Hyj around xS, yS. The local degrees of
freedom at node j are the incremental translations Duj, Dvj, Dwj in directions of local coordinates x, y,
z and rotations /xj, /yj around x, y. The transformation of the increments of the displacements at node
j from the local coordinate system Dqej, to the corresponding base coordinates, Dqbj can be written as
Dqbj ¼

DUj

DV j

DW j

Hxj

Hyj

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼
kRT 0

0 ksj

� � Duj
Dvj
Dwj

/xj

/yj

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ kTbjDqej ð25Þ
in which ksj is the upper left 2 · 2 submatrix of kSj defined in Eq. (24). The transformation matrix for the
nodal displacement vector may be written as
Dqb ¼ kTbDqe; ð26Þ

where kTb is composed of kTbj with j = 1,2,3,4.

The vector of the local increments of displacements nodal displacements is shown in Fig. 4 and given
by Eq. (27)
Dqej ¼ fDuj;Dvj;Dwj;D/xj;D/yjg
T j ¼ 1; 2; 3; 4: ð27Þ
4. Linear element stiffness matrix

An accurate and efficient shell finite element was presented in the authors� previous paper (Woelke and
Voyiadjis, submitted for publication). It is an assumed strain type of element, free from locking and
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spurious energy modes. The quasi-conforming technique (Tang et al., 1983) was used which gives an expli-
cit form of the stiffness matrix as integrations are carried out directly. A detailed derivation is given in
Woelke and Voyiadjis (submitted for publication).

In order to overcome the problem of shear locking, the Kirchhoff–Love assumption must be satisfied for
the case of thin shells. Since the shear forces Qx, Qy are generally finite, the shear deformations cxz and cyz
must vanish when the shear rigidity T approaches infinity. Hu (1984) point out that in order to satisfy this
requirement the interpolation formulas must contain the ratio of the flexural and shear rigidities. We use
here the approximation of the displacement w and rotations / for the straight beam of length l given by Hu
w ¼ 1

2
1� nþ k

2
ðn3 � nÞ

� �
wi þ

1

4
½1� n2 þ kðn3 � nÞ� l

2
/i þ

1

2
1þ n� k

2
ðn3 � nÞ

� �
wj

þ 1

4
½�1þ n2 þ kðn3 � nÞ� l

2
/j; ð28Þ

/ ¼ � 3

2l
k½1� n2�wi þ

1

4
½2� 2n� 3kð1� n2Þ�/i þþ 3

2l
k½1� n2�wj þ

1

4
½2þ 2n� 3kð1� n2Þ�/j; ð29Þ
where
n ¼ 2x
l
� 1 6 n 6 1; k ¼ 1

1þ 12 D
Tl2

� � : ð30Þ
D and T denote the flexural and shear rigidity of the shell respectively. In equation, (30) the parameter
D/Tl2 accounts for the shear deformation effect. We notice that when shear rigidity is very large and
(h/l)2 ! 0, then k ! 1, and w in Eq. (28) reduces to a Hermite function and the Kirchhoff–Love assumption
is satisfied. When the shear rigidity is very small on the other hand, k = 0, and Eq. (28) reduces to Cook�s
(1972) interpolation formula. The interpolation formulas given by Eqs. (28)–(30) are therefore suitable for
both the classical theory of shells, as well as the thick shell theory based on which the present element is
formulated.

The problem of membrane locking is avoided by the appropriate choice of the strain fields as well as a
third order approximation of the membrane displacements u,v. Approximation of the strains independently
of the displacements allows satisfying the inextensibility condition for very thin curved shells and thus any
serious membrane locking is not experienced. Further details regarding overcoming shear and membrane
locking may by found in Woelke and Voyiadjis (submitted for publication).

In the quasi-conforming technique, the displacement and strain fields are interpolated independently and
the compatibility equations are only satisfied in a weak sense i.e., under the integral sign. The strain fields in
the element are interpolated as follows:

• Linear bending strain field:
eb ¼
jx

jy

2jxy

8>><
>>:

9>>=
>>; ¼

o/x

ox
o/y

oy

o/x

oy
þ
o/y

ox

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼
1xyxy 0

1xyxy

0 1xy

2
664

3
775

a1

a2

a3

. . .

a10

a11

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼ Pbab: ð31Þ



2218 G.Z. Voyiadjis, P. Woelke / International Journal of Solids and Structures 43 (2006) 2209–2242
• Stretch strain field:
em ¼
ex
ey
2exy

8><
>:

9>=
>; ¼

ou
ox

þ w
R

ov
oy

þ w
R

ou
oy

þ ov
ox

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼
1 y 0 0 0

0 0 1 x 0

0 0 0 0 1

2
64

3
75

a12
a13
a14
a15
a16

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ Pmam: ð32Þ
• Constant transverse shear strain:
es ¼
cxz
cyz

( )
¼

ow
ox

� /x �
u
R

ow
oy

� /y �
v
R

8>><
>>:

9>>=
>>; ¼

1 0

0 1

� �
a17
a18

� 	
¼ Psas; ð33Þ
where a1,a2, . . . ,a18, are the undetermined strain parameters.

Let P be the trial function for the assumed strain field i.e.,
e ¼ Pa ð34Þ

and N—the corresponding test function. We multiply both sides by the test function and integrate over the
element domain
Z Z

X
NTedX ¼ a

Z Z
X
NTPdX: ð35Þ
The strain parameter a is determined from the quasi-conforming technique as follows:
a ¼ A�1Cq; ð36Þ
where q is the element nodal displacement vector given by Eq. (27), and
A ¼
Z Z

X
NTPdX and Cq ¼

Z Z
X
NTedX: ð37Þ
The details of the evaluation of the A, C matrices are given in Shi and Voyiadjis (1990), Shi and Voyiadjis
(1991), Tang et al. (1983) and Woelke and Voyiadjis (submitted for publication). We may now express the
strain field in terms of the nodal displacements as follows:
e ¼ Pa ¼ PA�1Cq ¼ Bq: ð38Þ

In most cases, it is convenient to take P = N in order to obtain a symmetric stiffness matrix. This is the case
in this work. Both matrices A and C may be easily evaluated explicitly. Illustration of this procedure is
given in Tang et al. (1983) and Woelke and Voyiadjis (submitted for publication). We therefore obtain
eb ¼ PbA
�1
b Cbq ¼ Bbq ð39Þ

em ¼ PmA
�1
m Cmq ¼ Bmq ð40Þ

es ¼
1

X
Cbq ¼ Bsq; ð41Þ
where Bb, Bm, Bs are the strain displacement matrices related to bending, stretch, transverse shear deforma-
tion respectively.
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In order to determine the stiffness matrix of the element we make use of the strain energy density, ex-
pressed as follows:
U ¼ 1

2
ðMxjx þMyjy þ 2Mxyjxy þ Nxex þ Nyey þ 2Nxyexy þ Qxcxz þ QycyzÞ: ð42Þ
Substituting Eqs. (1)–(14) into the above expression and integrating over the element domain we obtain the
following total strain energy Pe in the element domain X
Pe ¼
1

2

Z Z
X
ðeTbDeb þ eTmSem þ eTs TesÞdX; ð43Þ
or using (39)–(41)
Pe ¼
1

2
qT
Z Z

X
ðBT

bDBb þ BT
mSBm þ BT

s TBsÞdXq; ð44Þ
which leads to
Pe ¼
1

2
qT½Kb þ Km þ Ks�q; ð45Þ
where Kb, Km, Ks are the element stiffness matrices related to bending, stretch and transverse shear defor-
mation, given by
Kb ¼
Z Z

X
BT

bDBb dX; ð46Þ

Km ¼
Z Z

X
BT

mSBm dX; ð47Þ

Ks ¼
Z Z

X
BT

s TBs dX: ð48Þ
The element stiffness matrix is then given by
K ¼ Kb þ Km þ Ks: ð49Þ
5. Yield criterion and hardening rule

As discussed in Section 1, a yield criterion in terms of stress resultants and couples is used here, similar to
Iliushin�s yield function. The yield function is modified to account for the progressive development of the
plastic curvatures and shear forces, as given in Shi and Voyiadjis (1992). The Iliushin�s yield function F can
be written as
F ¼ M2

M2
0

þ N 2

N 2
0

þ 1ffiffiffi
3

p jMN j
M0N 0

� Y ðkÞ
r2
0

¼ 0; ð50Þ
or
F ¼ jM j
M0

þ N 2

N 2
0

� Y ðkÞ
r2
0

¼ 0; ð51Þ
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where
N 2 ¼ N 2
x þ N 2

y � NxNy þ 3N 2
xy ; ð52Þ

M2 ¼ M2
x þM2

y �MxMy þ 3M2
xy ; ð53Þ

MN ¼ MxNx þMyNy �
1

2
MxNy �

1

2
MyNx þ 3M2

xy ; ð54Þ

M0 ¼
r0h

2

4
; N 0 ¼ r0h ð55Þ
and r0 is the uniaxial yield stress, Y(k) is a material parameter, which depends on isotropic hardening
parameter k; h is the thickness of the shell, and jÆj denotes absolute value.

The form of the yield condition given by Eq. (50), can be easily derived from the von Mises function and
the definition of normal stresses at top and bottom surfaces of the shell, as shown in Bieniek and Funaro
(1976). We can include the transverse shear forces Qx, Qy by modifying one of the stress intensities (Shi and
Voyiadjis, 1992)
N 2 ¼ N 2
x þ N 2

y � NxNy þ 3ðN 2
xy þ Q2

x þ Q2
yÞ: ð56Þ
It is shown later, (Examples 7.1 and 7.2) that the influence of the shear forces on plastic behaviour of thick
plates and shells may be very important.

For a bending dominant situation, according to Eq. (50) or (51), the structure will behave linearly until
the whole cross-section is plastic, i.e., the plastic hinge has formed. In reality however, the plastic curvature
develops progressively from the outer fibers of the shell or plate and the material behaves non-linearly as
soon as the outer fibers start to yield. To account for the development of plastic curvature across the thick-
ness, Crisfield (1981) introduced a plastic curvature parameter að�jpÞ, into Eqs. (50) and (51)
F ¼ M2

a2M2
0

þ N 2

N 2
0

þ 1ffiffiffi
3

p
a

jMN j
M0N 0

� Y ðkÞ
r2
0

¼ 0; ð57Þ

F ¼ jM j
aM0

þ N 2

N 2
0

� Y ðkÞ
r2
0

¼ 0; ð58Þ
where a was chosen such that aM0 follows the uniaxial moment–plastic curvature relation:
a ¼ 1� 1

3
exp � 8

3
�jp

� �
ð59Þ
and
�jp ¼
X

D�jp ¼ Ehffiffiffi
3

p
r0

X
ððDjp

xÞ
2 þ ðDjp

yÞ
2 þ Djp

xDj
p
y þ ðDjp

xyÞ
2
=4Þ1=2: ð60Þ
�jp is the equivalent plastic curvature, Djp
x , Dj

p
y and Djp

xy are the increments of the plastic curvatures. We
note that for �jp ¼ 0, a = 2/3 and we obtain aM0 ¼ r0t2

6
which represents first fiber yielding. If on the other

hand �jp ¼ 1, a = 1 and we obtain fully plastic cross-section. Therefore, through the introduction of the
plastic curvature parameter a we account for progressive development of the plastic curvatures and cor-
rectly predict the first yield.

To model the elasto-plastic behaviour of shells subjected to reversing loads, one needs a reliable kine-
matic hardening rule. Bieniek and Funaro (1976) introduced residual bending moments (�hardening para-
meters�), allowing for the description of the Bauschinger effect. These were later successfully applied for
dynamic (Bieniek et al., 1976) and viscoplastic dynamic analysis of shells (Atkatsh et al., 1982, 1983).
To determine correctly the rigid translation of the yield surface in the stress resultant space, we need not
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only residual bending moments, but also residual normal and shear forces. These hardening parameters are
related directly to the backstress, which represents the center of the yield surface in the stress space. We will
therefore introduce a new kinematic hardening rule for plates and shells, with residual stress resultants, de-
rived directly from the evolution of the backstress given by Armstrong and Frederick (1966). The yield sur-
face is expressed as
F � ¼ jM�j
aM0

þ ðN �Þ2

N 2
0

� Y ðkÞ
r2
0

¼ 0; ð61Þ
where
ðN �Þ2 ¼ ðNx � N �
xÞ

2 þ ðNy � N �
yÞ

2 � ðNx � N �
xÞðNy � N �

yÞ þ 3½ðNxy � N �
xyÞ

2 þ ðQx � Q�
xÞ

2 þ ðQy � Q�
yÞ

2�;
ð62Þ

ðM�Þ2 ¼ ðMx �M�
xÞ

2 þ ðMy �M�
yÞ

2 � ðMx �M�
xÞðMy �M�

yÞ þ 3ðMxy �M�
xyÞ

2
; ð63Þ
where M�
x ;M

�
y ;M

�
xy ;N

�
x ;N

�
y ;N

�
xy ;Q

�
x ;Q

�
y are above described residual bending moments, normal and shear

forces respectively. We now proceed to definition of kinematic hardening parameters. For purpose of con-
ciseness, we will use the indicial notation in the derivation, and only the final result will be given using engi-
neering notation. The Armstrong and Frederick�s evolution of the backstress qij is given by
Dqij ¼ cDepij � aqijDe
p
eq; ð64Þ
where a and c are constants and the equivalent plastic strain increment is
Depeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
DepijDe

p
ij

r
: ð65Þ
The backstress represents the center of the transferred yield surface in the stress space. It has the dimension
of stresses. To compute the stress resultants we need to integrate the stresses over the thickness of the plate.
We will use the same definition here to derive hardening parameters, which represent the center of the yield
surface in the stress resultant space. We therefore need to integrate the backstress over the thickness of the
plate, to obtain residual normal and shear forces and bending moments. The definitions of the increments
of hardening parameters are as follows:
DN �
ij ¼

Z h=2

�h=2
Dqijdz; ð66Þ

DM�
ij ¼

Z h=2

�h=2
Dqijzdz: ð67Þ
Substituting Eq. (64) into Eq. (66) we obtain
DN �
ij ¼

Z h=2

�h=2
ðcDepij � aqijDe

p
eqÞdz: ð68Þ
The increments of plastic strains Depij in Eq. (68) are membrane strains, due to normal forces only. These are
constant across the thickness of the shell, and we thus can write
DN �
ij ¼ chDepij � ahqijDe

p
eq: ð69Þ
Defining the hardening parameters similarly to stress resultants
hqij ¼ N �
ij ð70Þ
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we can rewrite Eq. (69)
DN �
ij ¼ chDepij � aN �

ijDe
p
eq: ð71Þ
Constants a and c are given similarly to Bieniek and Funaro (1976)
a ¼ c ¼ b1ð1� F Þ 1
h
N 0

e0
; ð72Þ
where N0 and e0 are given by
N 0 ¼ r0h; e0 ¼ r0=E; ð73Þ

where F is a yield surface given in Eq. (58), h is a thickness of a plate and b1 is a constant. We therefore
obtain
DN �
ij ¼ b1ð1� F ÞN 0

e0
Depij �

1

h
N �

ijDe
p
eq

� �
ð74Þ
Similarly, substituting Eq. (64) into Eq. (67) we determine the increments of the residual bending moments
DM�
ij ¼

Z h=2

�h=2
ðcDepij � aqijDe

p
eqÞzdz; ð75Þ
where Depij and Depeq are
Depij ¼ zDjp
ij; Depeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Djp

ijDj
p
ij

q
: ð76Þ
Substituting Eq. (76) into Eq. (75) and integrating it we have
DM�
ij ¼ c

h3

12
Djp

ij � a
h3

12
qijDj

p
eq; ð77Þ
or
DM�
ij ¼ c

h3

12
Djp

ij � a
h
2
M�

ijDj
p
eq; where qij

h2

6
¼ M�

ij ð78Þ
and constants a and c are expressed similarly to those in Eq. (72)
a ¼ c ¼ b2ð1� F Þ 12
h3

M0

j0

; ð79Þ
which leads to
DM�
ij ¼ b2ð1� F ÞM0

j0

Djp
ij �

6

h2
M�

ijDj
p
eq

� �
: ð80Þ
The hardening parameters can now be rewritten in engineering notation
If F � ¼ 1 and rF � > 0 ðplastic loadingÞ

DN �
x ¼ b1ð1� F ÞN 0

e0
Depx �

1

h
N �

xDe
p
eq

� �
;

DN �
y ¼ b1ð1� F ÞN 0

e0
Depy �

1

h
N �

yDe
p
eq

� �
;

DN �
xy ¼ b1ð1� F ÞN 0

e0
Depxy �

1

h
N �

xyDe
p
eq

� �
; ð81Þ
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DQ�
x ¼ b1ð1� F ÞN 0

e0
Depxz �

1

h
Q�

xDe
p
eq

� �
;

DQ�
y ¼ b1ð1� F ÞN 0

e0
Depyz �

1

h
Q�

yDe
p
eq

� �
;

DM�
x ¼ b2ð1� F ÞM0

j0

Djp
x �

6

h2
M�

xDj
p
eq

� �
;

DM�
y ¼ b2ð1� F ÞM0

j0

Djp
y �

6

h2
M�

yDj
p
eq

� �
; ð82Þ

DM�
xy ¼ b2ð1� F ÞM0

j0

Djp
xy �

6

h2
M�

xyDj
p
eq

� �
;

If F � < 1 and rF �
6 0 ðunloading or neutral loadingÞ

DN �
x ¼ DN �

y ¼ DN �
xy ¼ DQ�

x ¼ DQ�
y ¼ DM�

x ¼ DM�
y ¼ DM�

xy ¼ 0: ð83Þ
Parameters b1 and b2 in the above formulation control the membrane force–membrane strain and moment–
curvature relations. A value b1 = b2 = 2.0 is found to be of sufficient accuracy in representation of behav-
iour of shells.

We therefore arrive at a final form of the yield function expressed in terms of stress resultants and cou-
ples with both isotropic and kinematic hardening rules. A graphic representation of yield surface given by
(61) on the NxMx plane with a = 1 and Y ¼ r2

0 is shown in Fig. 5. Point O 0 denotes the transferred center of
the yield surface.
6. Explicit tangent stiffness matrix

The plastic node method is adopted here, i.e., the plastic deformations are considered concentrated in the
plastic hinges. The yield function is only checked at each node of the finite elements. If the combination of
stress resultants satisfies the yield condition at a specific node, that node is considered plastic. Thus, in this
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method the inelastic deformations are only considered at the nodes, while the interior of the element re-
mains always elastic.

When node i of the element becomes plastic, the yield function takes the form
F �
i ðNi;Qi;Mi;N

�
i ;Q

�
i ;M

�
i ; kÞ ¼ 0; ð84Þ
where
Ni ¼
Nx

Ny

Nxy

8><
>:

9>=
>;; Qi ¼

Qx

Qy

( )
; Mi ¼

Mx

My

Mxy

8><
>:

9>=
>;; N�

i ¼
N �

x

N �
y

N �
xy

8><
>:

9>=
>;; Q�

i ¼
Q�

x

Q�
y

( )
; M�

i ¼
M�

x

M�
y

M�
xy

8><
>:

9>=
>;:

ð85Þ
At the same time the stress resultants must remain on the yield surface, i.e., the consistency condition must
be satisfied
oF �
i

oMi
dMi þ

oF �
i

oNi
dNi þ

oF �
i

oQi
dQi þ

oF �
i

oM�
i

dM�
i þ

oF �
i

oN�
i

dN�
i þ

oF �
i

oQ�
i

dQ�
i þ

oF �
i

ok
dk ¼ 0: ð86Þ
We assume an additive decomposition of strains into elastic and plastic parts
e ¼ ee þ ep: ð87Þ

The associated flow rule is used here to determine the increments of plastic strains
Djp
x ¼

XNPN

i¼1

Dki
oF �

i

oMxi
; ð88Þ
where NPN is the number of plastic nodes in the element and dki is a plastic multiplier. The remaining
increments of the plastic strains are obtained in the same way. The plastic strain fields are interpolated
as in linear elastic analysis (Eqs. (31)–(33)) rewritten here in the incremental form
Depb ¼
Djp

x

Djp
y

2Djp
xy

8><
>:

9>=
>;; Depm ¼

Depx
Depy
2Depxy

8><
>:

9>=
>;; Deps ¼

Dcpxz
Dcpyz

( )
: ð89Þ
The assumption of an additive decomposition of strains may be extended to displacements, provided that
the strains are small (Shi and Voyiadjis, 1992; Ueda and Yao, 1982). Although geometric non-linearities are
taken into account in the current work, we only consider large rigid rotations and translations, but small
strains. Thus, we may write
q ¼ qe þ qp: ð90Þ

Following the work of Shi and Voyiadjis (1992) we approximate the increments of plastic displacements by
the increments of plastic strains. The plastic rotation D/p

x will be a function of both Djp
x and Djp

xy , as can be
deduced from Eq. (31). Assuming that increment of plastic nodal rotation D/p

xi is proportional to the incre-
ment of elastic nodal rotation D/xi we may express the former as
D/p
xi ¼ lim

dX!0

Z Z
oXi

Djp
x þ

D/2
xi

D/2
xi þ D/2

yi

2Djp
xy

" #
dxdy ¼ Dki

oF �
i

oMxi
þ 2D/2

xi

D/2
xi þ D/2

yi

oF �
i

oMxyi

" #
; ð91Þ
where dXi represents the infinitesimal neighborhood of node i. The vector of incremental nodal plastic dis-
placements of the element at node i may then be expressed as
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Dqpi ¼ aiDki ð92Þ

with ai given by
aTi ¼ oF �
i

oNxi
þ pu

oF �
i

oNxyi
;
oF �

i

oNyi
þ pv

oF �
i

oNxyi
;
oF �

i

oQxi

þ oF �
i

oQyi

;

(

oF �
i

oMxi
þ p/x

oF �
i

oMxyi
;
oF �

i

oMyi
þ p/y

oF �
i

oMxyi

)
ð93Þ

pu ¼
2Du2i

Du2i þ Dv2i
; pv ¼

2Dv2i
Du2i þ Dv2i

; p/x ¼
2D/2

xi

D/2
xi þ D/2

yi

; p/y ¼
2D/2

yi

D/2
xi þ D/2

yi

:

Eqs. (92) and (93) indicate that the plastic displacements at the nodes are only the functions of stress resul-
tants at this node (Shi and Voyiadjis, 1992). Therefore, we can write the vector of increments of nodal plas-
tic displacements, as follows:
Dqp ¼
a1 0 0

0 ai 0

0 0 aNPN

2
64

3
75

Dk1

Dki

DkNPN

8><
>:

9>=
>; ¼ aDk: ð94Þ
In order to determine the tangent stiffness matrix of the element we define deb, dem, des as virtual elastic
bending, membrane and transverse shear strains respectively (d-virtual) and M,N,Q as stress couples
and stress resultants of the element. We also make use of the linearized equilibrium equations of the system
at configuration k + 1 in the updated Lagrangian formulation, expressed by the principle of the virtual
work, which in finite element modeling takes the form
Z

X

Z
ðdeTbDeb þ deTmSem þ deTs TesÞdxdy

Z
X

Z
dhTkFhdxdy

¼ kþ1R�
Z
X

Z
ðdeTb kMþ deTm

kNþ deTs
kQÞdxdy; ð95Þ
where k + 1R is the total external virtual work at step k + 1 and h is the slope vector and kF is a membrane
stress resultant matrix at step k given by
h ¼

oDw
ox
oDw
oy

8>><
>>:

9>>=
>>;; kF ¼

kNx
kNxy

kNxy
kNy :

" #
ð96Þ
The slope field h is evaluated in a similar way to the strain fields, using quasi-conforming technique (Tang
et al., 1980, 1983). A bilinear interpolation is used as in Shi and Voyiadjis (1991) to approximate the slope
field 8 9
h ¼
1 x y xy 0 0 0 0

0 0 0 0 1 x y xy

� � b1

b2

b3

b7

b8

>>>>>><
>>>>>>:

>>>>>>=
>>>>>>;

¼ Pb ð97Þ
with P denoting the trial function matrix and b is a vector of undetermined parameters, calculated in the
same way as the vectors of strain parameters a used to approximate the strain fields (Eqs. (31)–(33))
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b ¼ A�1CDqe; A ¼
Z
X

Z
PTPdxdy; CDqe ¼

Z
X

Z
PThdxdy: ð98Þ
The details of the evaluation of the A, C matrices are given in Shi and Voyiadjis (1990), Shi and Voyiadjis
(1991), Tang et al. (1983) and Woelke and Voyiadjis (submitted for publication). The slope field h is there-
fore expressed in terms of the slope–displacement matrix G
h ¼ PA�1CDqe ¼ GDqe: ð99Þ
The cubic interpolation of Dw along the boundary of the elements, given by Hu (1984) will be used here to
evaluate C matrix
DwðsÞ ¼ ½1� nþ kðn� 3n2 þ 2n3Þ�Dwi þ ½n� n2 þ kðn� 3n2 þ 2n2Þ� lij
2
D/si

þ ½n� kðn� 3n2 þ 2n3Þ�Dwj þ ½�nþ n2 þ kðn� 3n2 þ 2n2Þ� lij
2
D/sj; ð100Þ

n ¼ s
lij

; 0 6 s 6 lij; 0 6 n 6 1; k ¼ 1

1� 12 D
TL2

� � ;

where lij is the distance between nodes i and j, D/si, D/sj are tangential rotations at nodes i and j respec-
tively, and D, T are flexural and transverse shear rigidities. The influence of parameter k is explained in
Hu (1984) and Woelke and Voyiadjis (submitted for publication).

Using Eq. (99), the virtual work principle given by (95) may now be rewritten
Z
X

Z
ðdeTbDeb þ deTmSem þ deTs TesÞdxdy þ dDqe

T

KgDq
e

¼ kþ1R�
Z
X

Z
ðdeTb kMþ deTm

kNþ deTs
kQÞdxdy; ð101Þ
where Kg is the initial stress matrix defined as
Kg ¼
Z
X

Z
GTkFGdxdy ð102Þ
Substituting Eqs. (39)–(41) into the right-hand side of the above we can write
Z
X

Z
ðdeTb kMþ deTm

kNþ deTs
kQÞdxdy ¼ dDqTDf; ð103Þ
where f is the internal force vector resulting from the unbalanced forces in configuration k and is expressed
as follows:
f ¼
Z
X

Z
ðBT

b
kMþ BT

m
kNþ BT

s
kQÞdxdy: ð104Þ
We may now rewrite Eq. (95) using Eqs. (7)–(14), written in a matrix form, and Eqs. (87), (104) as follows:
Z
X

Z
dee

T

b þ dep
T

b

� �
Mþ dee

T

m þ dep
T

m

� �
Nþ dee

T

s þ dep
T

s

� �
Q

h i
dxdy þ dDqe

T

KgDq
e ¼ kþ1R� dDqTDf

ð105Þ
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rearranging terms and writing the above equation in incremental form
Z
X

Z
dDee

T

b DMþ dDee
T

mDNþ dDee
T

s DQ
� �

dxdy

þ
Z
X

Z
dDep

T

b DMþ dDep
T

m DNþ dDep
T

s DQ
� �

dxdy þ dDqe
T

KgDq
e ¼ kþ1R� dDqTDf. ð106Þ
Substituting Eq. (88) into Eq. (106) we obtain
Z
X

Z
dDee

T

b DMþ dDee
T

mDNþ dDee
T

s DQ
� �

dxdy

þ
XNPN

i¼1

dDki
oF �

i

oMi
dMi þ

oF �
i

oNi
dNi þ

oF �
i

oQi
dQi

� �
þ dDqe

T

KgDq
e ¼ kþ1R� dDqTDf. ð107Þ
Making use of the Eqs. (43)–(45), as well as the consistency condition given by Eq. (86), we may write
dDqe
TðKþ KgÞDqe �

XNPN

i¼1

dDki
oF �

i

oM�
i

dM�
i þ

oF �
i

oN�
i

dN�
i þ

oF �
i

oQ�
i

dQ�
i þ

oF �
i

ok
dk

� �
¼ kþ1R� dDqTDf; ð108Þ
where K is the linear elastic stiffness matrix given by Eq. (49).
Similarly to Eq. (93) we define
aTbi ¼
oF �

i

oM�
i

¼ oF �
i

oM�
xi

;
oF �

i

oM�
yi

;
oF �

i

oM�
xyi

( )
;

aTmi ¼
oF �

i

oN�
i

¼ oF �
i

oN �
xi

;
oF �

i

oN �
yi

;
oF �

i

oN �
xyi

( )
;

aTsi ¼
oF �

i

oQ�
i

¼ oF �
i

oQ�
xi

;
oF �

i

oQ�
yi

( )
:

ð109Þ
Substituting Eq. (88) into Eqs. (81) and (82) we obtain
dM�
x ¼ DM�

x ¼ b2ð1� F ÞM0

j0

Dk
oF �

oMx
� 6

h2
M�

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

oF �

oMx

� �2

þ oF �

oMy

� �2

þ oF �

oMxy

� �2
" #vuut

2
4

3
5: ð110Þ
Similar equations may be derived for the remaining hardening parameters. The vectors of hardening
parameters will therefore yield
dN�
i ¼

DN �
x

DN �
y

DN �
xy

8>>><
>>>:

9>>>=
>>>; ¼ DkAmi; dQ�

i ¼
DQ�

x

DQ�
y

( )
¼ DkAsi; dM�

i ¼

DM�
x

DM�
y

DM�
xy

8>>><
>>>:

9>>>=
>>>; ¼ DkAbi; ð111Þ
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Following the work of Shi and Voyiadjis (1992) we also define the isotropic hardening parameter as
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We may now substitute Eqs. (109), (111) and (113) into (108) to obtain
dDqe
TðKþ KgÞDqe þ dDkT H� aTbAb � aTmAm � aTs As

� �
Dk ¼ kþ1R� dDqTDf; ð114Þ
or using (90) and (92)
dDqT � dDqp
T

� �
ðKþ KgÞDqe þ dDkT H� aTbAb � aTmAm � aTs As

� �
Dk� kþ1Rþ dDqTDf

¼ dDqT ðKþ KgÞDqe � kþ1R� þ Df
� �

þ dDkT �aTðKþ KgÞDqe þ H� aTbAb � aTmAm � aTs As


 �
Dk

� �
¼ 0 ð115Þ
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with
kþ1R ¼ kþ1R�dDq: ð116Þ
By the virtue of the variational method Eq. (115) gives
ðKþ KgÞDqe � kþ1R� þ Df ¼ 0

� aTðKþ KgÞDqe þ H� aTbAb � aTmAm � aTs As


 �
Dk ¼ 0:

ð117Þ
Substituting (90) and (92) into the above equations, we get
ðKþ KgÞDqe � kþ1R� þ Df ¼ ðKþ KgÞðDq� aDkÞ ¼ kþ1R� � Df; ð118Þ

�aTðKþ KgÞðDq� aDkÞ þ H� aTbAb � aTmAm � aTs As


 �
Dk ¼ 0: ð119Þ
Eq. (119) leads to
Dk ¼ aTðKþ KgÞaþ H� aTbAb � aTmAm � aTs As


 �� ��1
aTðKþ KgÞDq: ð120Þ
Eq. (118) becomes
KepgDq ¼ kþ1R� � Df; ð121Þ
where Kepg is the elasto-plastic, large displacement stiffness matrix of the element, given by
Kepg ¼ ðKþ KgÞ I� a aTðKþ KgÞaþ H� aTbAb � aTmAm � aTs As


 �� ��1
aTðKþ KgÞ

n o
: ð122Þ
The tangent stiffness matrix given by Eq. (122) is similar to the one presented by Shi and Voyiadjis (1992).
The present formulation accounts for large displacements and consequently the stiffness matrix of the ele-
ment contains the initial stress matrix Kg. More importantly however, the above derived stiffness matrix
describes not only isotropic hardening, by means of parameter H, but also kinematic hardening, through
parameters Ab, Am, As, which are not determined by curve fitting, but derived explicitly from the evolution
equation of backstress given by Armstrong and Frederick (1966). We therefore have a non-layered finite
element formulation with shell constitutive equations, yield condition, flow and hardening rules expressed
in terms of membrane and shear forces and bending moments. All the variables used here, namely the stress
resultants and couples, as well as the residual stress resultants and couples, representing the center of the
yield surface, are derived from stresses and back-stresses in a very rigorous manner.

A very important feature of the derived tangent stiffness is its explicit form. The linear elastic stiffness
matrix and initial stress matrix are determined by a quasi-conforming technique, which allows all the inte-
grations to be performed analytically. The hardening parameters are also given explicitly. It is also noted
that through the thickness integration is not employed here either, since the current model is the non-lay-
ered model with the yield condition expressed in terms of stress couples and resultants.
7. Numerical examples

For the purpose of the implementation of the model, a finite element code is developed in the program-
ming language Fortran 90. A modified Newton–Raphson technique is employed to solve a system of non-
linear incremental equations. To overcome a singularity problem appearing at the limit point, the
arc-length method (Crisfield, 1991) is adopted to determine the local load increment for each iteration.
The return to the yield surface algorithm (Crisfield, 1991) is also implemented. The results delivered by
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the current model are computed using a personal computer with AMD Athlon Processor, 1.8 GHz and
1.5 GB of RAM. Some of the reference solutions obtained with the layered approach (ABAQUS) were
determined using a Silicon Graphics Onyx 3200 workstation.

The accuracy of the present formulation is verified through a series of discriminating examples. Since this
paper is a continuation of the previous work of the authors (Woelke and Voyiadjis, submitted for publica-
tion), in which the linear elastic behavior of shells is examined, we will only solve non-linear examples here.
The problems are chosen to challenge and demonstrate the most important features of the current model:

• Representation of the progressive development of plastic deformation until the plastic hinge is formed.
• The influence of the transverse shear forces on the plastic behavior of thick plates beams and shells of
general shape.

• Elasto-plastic behaviour of structures of interest upon reversal of loading (representation of Bauschinger
effect through kinematic hardening).

• Description of large displacements and rotations.

The performance of the proposed procedure is compared with other formulations available in the liter-
ature. Table 1 lists the references used here, and their corresponding abbreviations used later in the text.

7.1. Simply supported elasto-plastic beam

The importance of the transverse shear forces in the approximations of the collapse load of thick beams,
plates and shells is known to be significant. Neglecting transverse shears in assessments of the maximum
load carrying capacity of the structures may lead to predictions that are not conservative. Accurate and
safe approximations should result in a decreasing value of the maximum load factor with increasing thick-
ness. To test the accuracy of the current formulations in accounting for the shear deformation, we consider
a simply supported beam of length 2L = 20 in subjected to a concentrated load 2P = 20 lbf at its mid-point.
The Young�s modulus is E = 10.5E6 psi, yield stress r = 500 psi, and width of the beam is b = 0.15 in. We
compute the load factor of the beam as a function of thickness. The analytical solution of this problem
given by Hodge (1959) serves here as a reference solution.

As seen in Fig. 6, the current formulation agrees very well with analytical results of this problem by
Hodge (1959). As expected we observe a substantial drop in the load factor for thick beams. We note, that
for practical purposes only a certain range ofH is significant. When the thickness of the beam, plate or shell
Table 1
Listing of the models used with abbreviations

Name Description

ABQ-L ABAQUS layered model with von Mises type yield criterion and Ziegler kinematic hardening rule
(Hibbit, Karlson & Sorensen, Inc., 2001)

C&H Bounds for collapse load—analytical solution of cylindrical shell Chen and Han (1988)
F&O Numerical solution of pinched hemispherical shell by Flores and Onate (2001)
HOD Analytical solution given by Hodge (1959)
O&HNL Owen & Hinton non-layered model based on Mindlin plate theory and Iliushin�s yield criterion

(Owen and Hinton, 1980)
O&HL Owen & Hinton Layered Model based on Mindlin plate theory and von Mises yield criterion

(Owen and Hinton (1980))
SIMO Numerical solution of pinched hemispherical shell by Simo et al. (1990)
V&W-Q The present formulation with shear forces included in the yield function
V&W The present formulation without shear forces included in the yield function
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reaches 50% of its total length, we clearly enter a purely academic problem, however still valuable for illus-
trational purposes.

The reduction of the load factor is very significant even for moderately thick beam i.e., H = 0.5L (total
length of the beam is 2L), which is very closely approximated here.

7.2. Simply supported plate

The following example illustrates the accuracy of the current formulation in the prediction of the first
yield in plates, as well as the description of the load–displacement response under cyclic loads. In this exam-
ple, only material non-linearities will be examined, to allow for comparison with the reference solution by
Owen and Hinton (1980).

We consider a square (L = 1.0 m) simply supported plate subjected to a uniformly distributed load
q = 1.0 kPa. Young�s modulus is E = 10.92 kPa, Poisson�s ratio m = 0.3, yield stress r = 1600 kPa and
thickness of the plate t = 0.01 m. The geometry and material properties are shown in Fig. 7.

We compare the results obtained using the present finite element model with those published by Owen
and Hinton (1980), with use of layered and non-layered model (O & HL, O & HNL—Table 1). The load–
deflection responses are shown in Fig. 8.



Fig. 7. Simply supported plate geometry, material properties and deformed shape.
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One of the objectives of the current work is to account for the progressive plasticization of the cross-sec-
tion by means of a non-layered model. In a layered model, used here as a reference, we track the develop-
ment of the plastic deformation directly, since stresses are calculated at several different levels (layers) in the
model. In a layered model we operate in a stress resultant and stress couples space. The plastic bending
moment is calculated under the assumption of fully plastic cross-section. Hence, typically the cross-section
can only be either fully elastic or fully plastic, without any intermediate states. As seen in Fig. 8, the present
approach provides a very good approximation of plastic strains growing gradually from outer fibers to the
mid-plane.

The main thrust of this paper is developing a physically sound kinematic hardening rule for non-layered
plates and shells, correctly representing not only the moment–curvature relationship, but also the normal
forces–normal strain and the shear forces–shear strain relationships, upon complete reversal of loading.
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We therefore need to show the importance of all hardening parameters N*, Q*, M*. The simply sup-
ported plate under a uniformly distributed load is a problem in which the normal forces are negligible.
The residual forces N* will then also be negligible. The influence of these is investigated in the following
examples.

The current example is a bending dominant problem and hence the moment curvature relation is of pri-
mary importance. The load–displacement curve will take the shape of moment–curvature relation here.
Fig. 9 shows the load–deflection curves for plate in Fig. 7, under reversed loading condition. The ABAQUS
layered model with kinematic hardening rule is used here as a reference.

The current approximation is very close to the one of a layered approach, as seen in Fig. 9. This proves that
the definition of residual bendingmomentsM* in the hardening rule is sound and produces accurate results. It
is worthwhile to mention that the present model uses much less computational time and power than the lay-
ered approach because in the case of the latter the yield condition is checked at five layers across the thickness.
This means that a computer program performs five times as many operations in the plastic zone as in the case
of the current model. The number of layers increases with the increase of thickness of a shell. Thus, the present
work is extremely valuable for the elasto-plastic analysis of thick plates, shells and beams.

For the thickness of the plate t = 0.01, the influence of the transverse shear forces on the plastic behavior
is very small. In this case the residual transverse shear forces Q* will not matter either. With increasing
thickness of the plate, we observe increasing importance of the transverse shear forces as shown in Shi
and Voyiadjis (1992). We will show here that for thick plates, both transverse shear forces and residual
transverse shear forces play a very important role.

We consider the same rectangular simply supported plate as in Fig. 7. The thickness of the plate is how-
ever increased to t = 0.35 m, a uniform load to q = 850 kPa and the yield stress reduced to r = 1200 kPa.
The thickness of the plate is 35% of its length; hence we expect a significant reduction of the maximum load
carried by the plate due to the influence of the shear forces. Again, we compare the results with the layered
model, with the influence of transverse shears taken into account. The results are presented in Fig. 10.
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A diamond line denoted by ABQ-L is a layered approach with shear forces considered. It serves here as a
reference solution. We see that the current procedure performs very well is this test while at the same time
being much more efficient.

As expected the influence of the shear forces on the approximations of the collapse load is significant.
The analysis in which the transverse shear forces are not considered leads to a nearly 20% higher prediction
of maximum load carried by the plate. Neglecting the shear forces when analyzing thick plates, shells and
beams may lead to not conservative results.

When loading is reversed until yielding occurs at the top surface of the plate, the residual shear forces Q*

become important. The current model reproduces very well the lowered yield point upon reversal of load-
ing, and offers a solution very close to the one of the layered approach. We therefore conclude that the rep-
resentation of the residual shear forces as kinematic hardening parameters is physically sound and capable
of delivering veracious results.

7.3. Cylindrical shell subjected to a ring of pressure

The previous example showed the validity of the definition of the residual bending moments and residual
shear forces as kinematic hardening parameters. The derivation of the residual membrane forces is based on
the same assumptions. Hence, we expect them to as reliable as the shear forces and bending moments.
Since the membrane forces in bending of plates are negligible, the results of the former example do not
prove that the formulation of the residual shear forces is sound. In order to do this, we investigate the cylin-
drical shell under the ring of pressure. The geometry, deformed shape of an octant of a cylinder and mate-
rial parameters are shown in Fig. 11.

Due to symmetry we only need to consider an octant of a shell. The membrane forces play an important
role here. If the structure is loaded into a plastic zone, then unloaded and loaded in the opposite direction,



Fig. 11. Cylindrical shell subjected to a ring of pressure and a deformed shape.
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the residual membrane forces also become noteworthy. The results of the analysis compared with the
�through-the-thickness integration� (layered) method are given in Fig. 12.

We recognize again that the present non-layered model with a new kinematic hardening rule is robust
and agrees very well with the layered approach. The latter requires however five times as many operations
for non-linear calculations, as the yield function and consistency condition need to be checked at each layer
separately.

The problem presented here was originally investigated by Drucker (1954) and later by Chen and Han
(1988) who analytically determined the bounds for the collapse load of the cylinder. These bounds are given
by
1:5 6
P

r0h h
R
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The assessment of the collapse load of structures is of paramount importance from an engineering point of
view. We therefore examine the functioning of this model in the determination of the maximum load carried
by the cylinder. Eq. (123) will serve here as a reference solution. The collapse load as a function of thickness
of the shell is given in Fig. 13.

It is seen that the predictions of the maximum load carried by the cylinder are accurate and falling within
the analytical bounds. It is worthy to mention, that for the case of a very thick shells, the results approach
the lower bound solution. This is due to the fact that the shear forces become more and more important for
thick shells, causing reduction of the load carrying capacity.
7.4. Spherical dome with cut-out, subjected to a ring of pressure

A problem of a spherical dome with an 18� hole at the top, subjected to a ring of pressure will be solved
here to establish a wide range of applicability of the method derived here. It is an important engineering
problem, as well as a discriminating test of accuracy of the finite element representation of the behavior
of shells. The performance of the yield function and kinematic hardening rule is studied here once again.
The geometrical and material data are shown in Fig. 14.

The structure is loaded into a plastic zone, and then the pressure is reversed. The kinematic hardening
rule is applied to determine the equilibrium path. The layered approach once again serves as a reference.
The load–displacement curves are plotted in Fig. 15.

The approximation of the equilibrium path delivered by the current approach agrees very well with
adopted reference solution, showing once again the validity of the assumptions made here. The lowered
yield point is correctly reproduced by the yield surface defined in this paper.
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Fig. 14. Spherical dome with an 18� cut-out; geometry and material properties.
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7.5. Pinched hemispherical shell–geometrically non-linear test

In order to demonstrate the adequacy of this work in the representation of large displacements (finite
strains) we consider a popular benchmark problem–a pinched hemispherical shell (Morley Sphere), with
an 18� hole at the top, subjected to four point loads alternating in sign at 90� intervals on the equator.
Due to the symmetry, we only model a quadrant of the shell. The geometry, deformed shape and material
properties are shown in Fig. 16.



Fig. 16. Pinched hemispherical shell (Morley Sphere): geometry, deformed shape and material properties.
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The elastic solution of the problem serves very often as a benchmark problem for the linear analysis of
shells, (Belytschko et al., 1985; MacNeal and Harder, 1985; Morley and Morris, 1978; Simo et al., 1989;
Woelke and Voyiadjis, submitted for publication). Ample sections of the shell rigidly rotate under these
loading conditions, hence, precise modeling of the rigid body motion is essential for good performance
in this test, (Belytschko et al., 1985). Simo et al. (1990) and also Parish (1995), Hauptmann and Schweiz-
erhof (1998) and Flores and Onate (2001) used the same problem with an increased load factor to examine
the capabilities of their models in the description of large deformation. We will only compare the results
provided by the current formulation to those by Simo et al. and Flores et al. for conciseness. We note that
in the case of a geometrically non-linear analysis, the deflections under alternating forces are not equal. We
therefore plot the equilibrium path for both points of application of the load A and B. The load displace-
ment path is plotted in Fig. 17.

The displacements calculated with V&W model (current model) compare very well with the reference
solutions, proving that the present work gives adequate representation of large deformations.
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8. Conclusions

A mathematically consistent finite element model for elasto-plastic, large rotations analysis of thin/thick
shells is presented here. An accurate set of shell constitutive equations, previously developed by the same
authors is adopted. The theory treats both thick and thin shells, with transverse shear deformation, radial
stresses and initial curvature effects taken into account, which makes it accurate and reliable for a variety of
applications.

A numerical implementation of the shell constitutive equations, by means of the �quasi conforming tech-
nique�, leads to the development of a finite element free from common deficiencies, i.e., shear and mem-
brane locking and spurious energy modes. Moreover, integration is performed analytically, which is
more precise from a mathematical point of view, and features an explicit form of the stiffness matrix.
Numerical integration is not necessary which makes this formulation very efficient and attractive
computationally.

The most important feature of the paper is the non-layered yield surface with a new kinematic hardening
rule. Iliushin�s yield function expressed in terms of stress resultants and couples, and modified to account
for the progressive development of the plastic deformation and transverse shear forces is used. The kine-
matic hardening rule representing the rigid motion of the yield surface during loading, in the stress resultant
space is also derived. It is capable of correctly determining the load–displacement response including the
Bauschinger effect. Residual forces and bending moments are related to backstress using a similar definition
to that of primary forces and moments. All the integrals are calculated analytically, which makes the cur-
rent formulation extremely effective, as numerical integration is not employed at any stage of the compu-
tations. Thus, the kinematic hardening rule outlined here simplifies and speeds up the analysis, without any
substantial loss of accuracy.

Large rotations and displacements are often associated with inelastic deformation. An updated Lagrang-
ian method is utilized to describe the geometric non-linearities. We decompose rotations into large rigid
rotations and moderate relative rotations. The strains are assumed to be small.

The reliability of the presented concept is numerically evaluated through a series of benchmark prob-
lems. In all the cases results are very close to the reference solutions, which demonstrates that the model
is well grounded.

The effect of the shear forces on the plastic behavior and maximum load carrying capacity is correctly
recognized. As expected, the results show a reduction of the limit load for thick plates, shells and beams,
owing to the increasing significance of transverse shears.

The progressive plastification of the cross-section is also closely approximated. Typically, in the non-lay-
ered approach, the load displacement relation is linear until the plastic hinge is developed. Any yielding
occurring before the section becomes fully plastic is neglected. Through a modification introduced by
Crisfield (1981), the first yield of the outer fibers may be predicted as is also proven here.

The Bauschinger effect may only be numerically observed if the method employed features a veracious
kinematic hardening rule. The one proposed here is defined in a stress resultant space, which is very effective
from a structural analysis viewpoint. The lowered yield point upon reversal of load is correctly determined
here for both plates and shells proving that the definition of the �hardening parameters� is sound and capa-
ble of delivering very accurate results.

Example 7.5 evaluates the ability of the model to handle large rigid rotations. The solution offered here is
once again precise demonstrating validity of large rotation formulation.

We note that although presented framework is robust for plates and shells of general shape, it performs
best in the case of spherical shells. This is expected since the shell constitutive equations used here are
derived by means of spherical strains, and later generalized through the finite element method.

The elastic analysis of shells by means of three-dimensional �brick� elements is sometimes prohibitive due
to the complexity of the problem. Shell elements are �degenerated�; hence, they require a vastly reduced
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number of operations executed by the computer. It allows engineers to predict the internal forces of
complicated structures, which would have been difficult or impossible otherwise. Yet in the elasto-plastic
considerations, most shell elements follow the layered approach, which is a concept similar to three dimen-
sional �brick� elements. While in the case of composite laminates, multi-layered shells give more accurate
description of interlaminar effects, they lose their advantages in the analysis of isotropic homogenous shells.
A non-layered method seems to be a natural consequence of the shell elements� development because the
system of non-linear equations is expressed in terms forces and bending moments, and solved without dis-
cretization of the shell through the thickness. It allows taking the full advantage of shell elements in inves-
tigation of elasto-plastic behavior. A non-layered computational model consisting of a reliable shell element
and a sound definition of the yield surface, isotropic and kinematic hardening rules capable of accurate
description of elasto-plastic equilibrium path of shells under cyclic loading, is a great advancement.

The current work presents a complete and consistent formulation with redundant shell constitutive equa-
tions, finite element implementation in the elastic zone, yield surface and new kinematic hardening rule in
the stress resultant space (non-layered method). It delivers very precise results of non-linear analysis of
shells under cyclic loading, being at the same time simple and extremely effective.

The present model is also suitable for further enhancement leading to incorporation of damage effects,
which will be shown in the next paper of the authors.
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